BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Rabu, 23 Februari 2011

Articles Adverbial Claus

CANCER

Cancer (medical term: malignant neoplasm) is a class of diseases in which a group of cells display uncontrolled growth, invasion that intrudes upon and destroys adjacent tissues, and sometimes metastasis, or spreading to other locations in the body via lymph or blood. These three malignant properties of cancers differentiate them from benign tumors, which do not invade or metastasize.
Researchers divide the causes of cancer into two groups: those with an environmental cause and those with a hereditary genetic cause. Cancer is primarily an environmental disease, though genetics influence the risk of some cancers. Common environmental factors leading to cancer include: tobacco, diet and obesity, infections, radiation, lack of physical activity, and environmental pollutants. These environmental factors cause or enhance abnormalities in the genetic material of cells. Cell reproduction is an extremely complex process that is normally tightly regulated by several classes of genes, including oncogenes and tumor suppressor genes. Hereditary or acquired abnormalities in these regulatory genes can lead to the development of cancer. A small percentage of cancers, approximately five to ten percent, are entirely hereditary.
The presence of cancer can be suspected on the basis of symptoms, or findings on radiology. Definitive diagnosis of cancer, however, requires the microscopic examination of a biopsy specimen. Most cancers can be treated. Possible treatments include chemotherapy, radiotherapy and surgery. The prognosis is influenced by the type of cancer and the extent of disease. While cancer can affect people of all ages, and a few types of cancer are more common in children, the overall risk of developing cancer increases with age. In 2007 cancer caused about 13% of all human deaths worldwide (7.9 million). Rates are rising as more people live to an old age and lifestyles change in the developing world.
Classification
Further information: List of cancer types and List of oncology-related terms
Cancers are classified by the type of cell that the tumor resembles and is therefore presumed to be the origin of the tumor. These types include:
• Carcinoma: Cancer derived from epithelial cells. This group includes many of the most common cancers, including those of the breast, prostate, lung and colon.
• Sarcoma: Cancer derived from connective tissue, or mesenchymal cells.
• Lymphoma and leukemia: Cancer derived from hematopoietic (blood-forming) cells
• Germ cell tumor: Cancer derived from pluripotent cells. In adults these are most often found in the testicle and ovary, but are more common in babies and young children.
• Blastoma: Cancer derived from immature "precursor" or embryonic tissue. These are also commonest in children.
Cancers are usually named using -carcinoma, -sarcoma or -blastoma as a suffix, with the Latin or Greek word for the organ or tissue of origin as the root. For example, a cancer of the liver is called hepatocarcinoma; a cancer of fat cells is called a liposarcoma. For some common cancers, the English organ name is used. For example, the most common type of breast cancer is called ductal carcinoma of the breast. Here, the adjective ductal refers to the appearance of the cancer under the microscope, which suggests that it has originated in the milk ducts.
Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For example, a benign tumor of smooth muscle cells is called a leiomyoma (the common name of this frequently occurring benign tumor in the uterus is fibroid). Confusingly, some types of cancer also use the -oma suffix, examples including melanoma and seminoma.
Signs and symptoms


Symptoms of cancer metastasis depend on the location of the tumor.
Cancer symptoms can be divided into three groups:
• Local symptoms: are restricted to the site of the primary cancer. They can include lumps or swelling (tumor), hemorrhage (bleeding from the skin, mouth or anus), ulceration and pain. Although local pain commonly occurs in advanced cancer, the initial swelling is often painless.
• Metastatic symptoms: are due to the spread of cancer to other locations in the body. They can include enlarged lymph nodes (which can be felt or sometimes seen under the skin), hepatomegaly (enlarged liver) or splenomegaly (enlarged spleen) which can be felt in the abdomen, pain or fracture of affected bones, and neurological symptoms.
• Systemic symptoms: occur due to distant effects of the cancer that are not related to direct or metastatic spread. Some of these effects can include weight loss (poor appetite and cachexia), fatigue, excessive sweating (especially night sweats), anemia (low blood count) and other specific conditions termed paraneoplastic phenomena. These may be mediated by immunological or hormonal signals from the cancer cells.
None of these are diagnostic, as many of these symptoms commonly occur in patients who do not have cancer.
Causes:
Cancers are primarily an environmental disease with 90-95% of cases attributed to environmental factors and 5-10% due to genetics. Environmental, as used by cancer researchers, means any cause that is not genetic. Common environmental factors that contribute to cancer death include: tobacco (25-30%), diet and obesity (30-35%), infections (15-20%), radiation (both ionizing and non ionizing, up to 10%), stress, lack of physical activity, and environmental pollutants.

Diet and exercise
Diet, physical inactivity, and obesity are related to approximately 30-35% of cancer cases. In the United States excess body weight is associated with the development of many types of cancer and is a factor in 14-20% of all cancer death. Physical inactivity is believed to contribute to cancer risk not only through its effect on body weight but also through negative effects on immune system and endocrine system.
Diets that are low in vegetables, fruits and whole grains, and high in processed or red meats are linked with a number of cancers. A high salt diet is linked to gastric cancer, aflatoxin B1, a frequent food contaminate, with liver cancer, and Betel nut chewing with oral cancer. This may partly explain differences in cancer incidence in different countries for example gastric cancer is more common in Japan with its high salt diet and colon cancer is more common in the United States. Immigrants develop the risk of their new country, often within one generation, suggesting a substantial link between diet and cancer.
Infection
Worldwide approximately 18% of cancers are related to infectious diseases. This proportion varies in different regions of the world from a high of 25% in Africa to less than 10% in the developed world. Viruses are usual infectious agents that cause cancer but bacteria and parasites may also have an effect.
A virus that can cause cancer is called an oncovirus. These include human papillomavirus (cervical carcinoma), Epstein-Barr virus (B-cell lymphoproliferative disease and nasopharyngeal carcinoma), Kaposi's sarcoma herpesvirus (Kaposi's Sarcoma and primary effusion lymphomas), hepatitis B and hepatitis C viruses (hepatocellular carcinoma), and Human T-cell leukemia virus-1 (T-cell leukemias). Bacterial infection may also increase the risk of cancer, as seen in Helicobacter pylori-induced gastric carcinoma. Parasitic infections strongly associated with cancer include Schistosoma haematobium (squamous cell carcinoma of the bladder) and the liver flukes, Opisthorchis viverrini and Clonorchis sinensis (cholangiocarcinoma).
Radiation
Up to 10% of cancers are related to radiation exposure either ionizing or nonionizing. Sources of ionizing radiation, include medical imaging, and radon gas. Radiation can cause cancer in most parts of the body, in all animals, and at any age, although radiation-induced solid tumors usually take 10–15 years, and up to 40 years, to become clinically manifest, and radiation-induced leukemias typically require 2–10 years to appear. Some people, such as those with nevoid basal cell carcinoma syndrome or retinoblastoma, are more susceptible than average to developing cancer from radiation exposure. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect. Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Low-dose exposures, such as living near a nuclear power plant, are generally believed to have no or very little effect on cancer development. Radiation is a more potent source of cancer when it is combined with other cancer-causing agents, such as radon gas exposure plus smoking tobacco.
Unlike chemical or physical triggers for cancer, ionizing radiation hits molecules within cells randomly. If it happens to strike a chromosome, it can break the chromosome, result in an abnormal number of chromosomes, inactivate one or more genes in the part of the chromosome that it hit, delete parts of the DNA sequence, cause chromosome translocations, or cause other types of chromosome abnormalities. Major damage normally results in the cell dying, but smaller damage may leave a stable, partly functional cell that may be capable of proliferating and developing into cancer, especially if tumor suppressor genes were damaged by the radiation. Three independent stages appear to be involved in the creation of cancer with ionizing radiation: morphological changes to the cell, acquiring cellular immortality (losing normal, life-limiting cell regulatory processes), and adaptations that favor formation of a tumor. Even if the radiation particle does not strike the DNA directly, it triggers responses from cells that indirectly increase the likelihood of mutations.
Medical use of ionizing radiation is a growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging. One report estimates that approximately 29,000 future cancers could be related to the approximately 70 million CT scans performed in the US in 2007. It is estimated that 0.4% of current cancers in the United States are due to CTs performed in the past and that this may increase to as high as 1.5-2% with 2007 rates of CT usage.

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission, and other similar sources has also been proposed as a cause of cancer, but there is currently little established evidence of such a link.

0 komentar: